
INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

128 IJDCST

A Scalable Distributed File System for Cloud Computing
Gangam Soumya

1
, Indira Priyadarshini

2

1
Student, BHARAT INSTITUTE OF TECHNOLOGY & SCIENCE FOR WOMENS, Mangalpally(V),

Ibrahimpatnam(M),R.R Dist Hyderabad, AP, INDIA

2
Associate Professor, BHARAT INSTITUTE OF TECHNOLOGY & SCIENCE FOR WOMENS, Mangalpally(V),

Ibrahimpatnam(M),R.R Dist Hyderabad, AP, INDIA

Abstract: Distributed file systems area unit key building blocks for cloud computing applications supported the

Map Reduce programming paradigm. In such file systems, nodes at the same time serve computing and storage

functions; a file is partitioned off into variety of chunks allotted in distinct nodes in order that Map Reduce tasks are

often performed in parallel over the nodes. However, during a cloud computing atmosphere, failure is that the norm,

and nodes is also upgraded, replaced, and more within the system. Files may also be dynamically created, deleted,

and appended. This ends up in load imbalance during a distributed file system; that's, the file chunks aren't

distributed as uniformly as attainable among the nodes. Rising distributed file systems in production systems

powerfully rely on a central node for chunk reallocation. This dependence is clearly inadequate during a large-scale,

failure-prone atmosphere as a result of the central load balancer is anesthetize goodish work that's linearly scaled

with the system size, and will so become the performance bottleneck and also the single purpose of failure. during

this paper, a totally distributed load rebalancing rule is given to address the load imbalance downside. Our rule is

compared against a centralized approach during a production system and a competitive distributed answer given

within the literature. The simulation results indicate that our proposal is comparable the present centralized approach

and significantly outperforms the previous distributed rule in terms of load imbalance issue, movement price, and

algorithmic overhead.

Keywords: Map Reduce, Distributed file system, rebalancing, node, chunk.

I.INTRODUCTION

Distributed Computing Environment (DCE),

developed at IBM Transarc research laboratory,

provides a user with the ability to store and access

knowledge at remote sites, just like the techniques

used with Network classification system (NFS).

Structurally, DCE DFS could be a assortment of

many file systems that square measure mounted onto

one virtual classification system area with a single

namespace. The top user has direct access to all or

any files during this distributed file system without

knowing wherever the physical files reside. Putting

file systems onto different servers so as to supply the

optimum service for the top users, moreover as

optimize the use of accessible resources, is load

equalization of DFS servers. Load balancing for

distributed systems represents mapping or

Remapping of labor to different processors with the

intent of distribution every processor AN equal

quantity of labor. Load equalization of information is

already a lot of economical in DFS than in customary

non-distributed file systems. One reason is that the

use of replication, that provides an alternative for

read only. DCE filesets to be replicated on multiple

machines. Requests for files from frequently used

.read-only. Filesets square measure then unfold

across completely different machines, preventing

anyone machine from changing into burdened with

knowledge requests.

Our goal during this chapter is to gift a brand new

methodology for managing read write. Filesets across

the DFS cell. The planned methodology employs data

mining techniques and graph theory algorithms to

accomplish the specified results of improved

employment distribution between DFS servers. The

information mining approach generates association

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

129 IJDCST

rules distinguishing existing file access patterns,

whereas graph analysis helps optimize relocation

selections and suggest fileset transfers. By

implementing the planned methodology, we have a

tendency to extend and improve the load balancing

techniques presently gift in DFS by augmenting them

with the improved management of .read-write. DCE

DFS filesets (in addition to read-only. filesets) across

multiple DFS file servers. Our methodology is

intended to make intelligent selections on mapping

.read-write. Filesets to multiple DFS file servers.

II. RELATED WORK

Existing solutions to balance load in DHTs incur a

high overhead either in terms of routing state or in

terms of load movement generated by nodes

incoming or outward the system. during this paper,

we have a tendency to propose a group of general

techniques and use them to develop a protocol

supported Chord, called Y0, that achieves load

equalization with tokenism overhead underneath the

everyday assumption that the load is uniformly

distributed within the symbol house.

In explicit, we have a tendency to prove that Y0 can

do near-optimal load equalization, whereas moving

very little load to keep up the balance and increasing

the scale of the routing tables by at the most a

relentless issue. exploitation in depth simulations

supported real-world and artificial capability

distributions, we have a tendency to show that Y0

reduces the load imbalance of Chord from O (log n)

to a but three.6 while not increasing the quantity of

links that a node has to maintain. Additionally, we

have a tendency to study the result of

heterogeneousness on each DHT, demonstrating

considerably reduced average route length as node

capacities become more and more heterogeneous. For

a real-world distribution of node capacities, the route

length in Y0 is asymptotically but [*fr1] the route

length within the case of a homogeneous system.

P2P communication:

Fig:1- P2P Communication

Alternatively remarked as P2P, P-to-P and P2P

communications, peer-to-peer communication refers

to the transmission between 2 peer computers over a

network. P2P became wide known by laptop users as

they began sharing MP3s and alternative files over

P2P networks. as an example, Napster is associate

example of a P2P software package application. once

downloading and putting in this program users were

able to connect with alternative computers, look for

songs, and transfer any of them freely.

Node Departure: While within the network, every

node manages information for a specific vary. once

the node departs, the information is keep becomes

unprocurable to the remainder of the peers. P2P

networks reconcile this information loss in 2 ways:

(a) Do nothing and let the “owners” of the

information contend with its accessibility.

The house owners can oftentimes poll the

information to discover its loss and re-insert the

information into the network. Maintain replicas of

every vary across multiple nodes. A Skip web DHT

organizes peers and information objects per their

composition addresses within the variety of a variant

of a probabilistic skip list. It supports index time

range-based lookups and guarantees path section.

Mercury is a lot of general than Skip web since it

supports range-based lookups on multiple-attributes.

Our use of sampling to estimate question property

constitutes a unique contribution towards

implementing ascendable multi-dimensional vary

queries. Load reconciliation is another necessary

manner during which Mercury from Skip web.

whereas Skip web incorporates a strained load-

balancing mechanism, it's solely helpful once a part

of an information name is hashed, during which case

the half is inaccessible for performing arts a spread

question. this means that Skip web supports load-

balancing or vary queries not each.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

130 IJDCST

Fig: 2- Node Communication

III. MODULE IMPLEMENTATION

3.1 Chunk creation:

A file is partitioned into a number of chunks

allocated in distinct nodes so that Map Reduce Tasks

can be performed in parallel over the nodes. The load

of a node is typically proportional to the number of

file chunks the node possesses. Because the files in a

cloud can be arbitrarily created, deleted, and

appended, and nodes can be upgraded, replaced and

added in the file system, the file chunks are not

distributed as uniformly as possible among the nodes.

Our objective is to allocate the chunks of files as

uniformly as possible among the nodes such that no

node manages an excessive number of chunks. Note

also that only a few nodesare close enough to any

vacated address to claim it (distantones will be

shielded by some closer active node),and thus, as the

address being vacated gets higher and higher in the

order, it become less and less likely that any node

that can take it will want it. We have shown how to

balance the address space, but sometimes this is not

enough. Some applications, such as those aiming to

support range-searching operations, needto specify a

particular, non-random mapping of items into the

address space.

In this section, we consider a dynamic protocol that

aims to balance load for arbitrary item

distributions.To do so, we must sacrifice the previous

protocol srestriction of each node to a small number

of virtual node locations—instead, each node is free

to migrate anywhere. This is unavoidable: if each

node is limited to a bounded number of possible

locations, then for any n nodes we can enumerate all

the addresses they might possibly occupy, take two

adjacent ones, and address all the items in between

them: this assigns all the items toone unfortunate

node.

Fig:3-Chunk Creation

3.2 Distributed Hash Table formulation

The storage nodes are structured as a network based

on distributed hash tables (DHTs), e.g., discovering a

file chunk can simply refer to rapid key lookup in

DHTs, given that a unique handle (or identifier) is

assigned to each file chunk. DHTs enable nodes to

self-organize and -

Repair while constantly offering lookup functionality

in node dynamism, simplifying the system provision

and management. The chunk servers in our proposal

are organized as a DHT network. Typical DHTs

guarantee that if a node leaves, then its locally hosted

chunks are reliably migrated to its successor; if a

node joins, then it allocates the chunks whose IDs

immediately precede the joining node from its

successor to manage.

Fig: 4-DHT Formulation

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

131 IJDCST

3.3 Load balancing algorithm

In our proposed algorithm, each chunk server node I

first estimate whether it is under loaded (light) or

overloaded (heavy) without global knowledge. A

node is light if the number of chunks it hosts is

smaller than the threshold. Load statuses of a sample

of randomly selected nodes. Specifically, each node

contacts a number of randomly selected nodes in the

system and builds a vector denoted by V. A vector

consists of entries, and each entry contains the ID,

network address and load status of a randomly

selected node.

Fig:5 – Load Rebalancing

Fig:6 –File Upload in Cloud

3.4 Replica Management

In distributed file systems (e.g., Google GFS and

Hadoop HDFS), a constant number of replicas for

each file chunk are maintained in distinct nodes to

improve file availability with respect to node failures

and departures. Our current load balancing algorithm

does not treat replicas distinctly. It is unlikely that

two or more replicas are placed in an identical node

because of the random nature of our load rebalancing

algorithm. More specifically, each under loaded node

samples a number of nodes, each selected with a

probability of 1/n, to share their loads (where n is the

total number of storage nodes).

Fig:7 – File Download In cloud

Test cases:

A test case, in software engineering, is a set of

conditions or variables under which a tester will

determine whether an application, software system or

one of its features is working as it was originally

established for it to do.

IV. Algorithm

Distributed load levelling scenario in that users

assign resources during a non-cooperative and selfish

fashion. The perceived performance of a resource

fora user decreases with the amount of users that

assign there source. In our dynamic, coincidental

model, users might apportion resources during a

round-based fashion. A user has zero utility when

falling in need of an explicit minimum performance

threshold and having positive utility otherwise. These

protocols operate by activating users in parallel

permitting them to boost their presently perceived

performance.

http://www.ijdcst.com/
http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Software_application
http://en.wikipedia.org/wiki/Software_system

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

132 IJDCST

Procedure 1 ADJUSTLOAD (Node Ni) fOn Tuple

Insertg

1: Let L(Ni) = x 2 (Tm; Tm+1].

2: Let Nj be the lighter loaded of Ni�1 and Ni+1.

3: if L(Nj) _ Tm�1 then fDo NBRADJUSTg

4: Move tuples from Ni to Nj to equalize load.

5: ADJUSTLOAD(Nj)

6: ADJUSTLOAD(Ni)

7: else

8: Find the least-loaded node Nk.

9: if L(Nk) _ Tm�2 then fDo REORDERg

10: Transfer all data from Nk to N = Nk_1.

11: Transfer data from Ni to Nk, s.t. L(Ni) = dx=2e

and

 L(Nk) = bx=2c.

12: ADJUSTLOAD (N)

13: fRename nodes appropriately after REORDER.g

14: end if

15: end if

For example, a user presently assigned to a resource

could sample another resource in keeping with a

probability distribution and migrate to the new

resource with a sure likelihood. Whereas being

supported native info in theory, most of the protocols

given within the literature additionally admit some

quantity of worldwide info, e.g. the set of under

loaded resources or the present performance of the

sampled resource. In distinction, the user thresholds

allow us to style algorithms, during which the actions

performed by a user rely solely on info concerning

the performance ofthe resource it's presently assigned

to.

Fig:8- Load Balance

The load reconciliation formula (or load

reconciliation method) defines the factors that the

NetScaler uses to pick the server to that to send

consumer requests. once the designed criteria area

unit met for the chosen server, the NetScaler then

selects a special server. Load reconciliation

roughness refers to the factors that the NetScaler uses

to determine the load reconciliation technique in a

very given scenario. The NetScaler performs request-

based, connection-based, or time-based load

reconciliation, reckoning on the protocol of the

service it's load reconciliation. at intervals every form

of load reconciliation, there area unit varied load

reconciliation ways. as an example, the smallest

amount association technique selects the service with

the smallest amount variety of active connections to

confirm that the load of the active requests is

balanced on the services.

Distribution Results:

We have given many incontrovertibly economical

loads leveling for distributed file’s protocols for

distributed information storage in P2P systems.

Additional details and analysis may be found in an

exceedingly thesis. Our algorithms square measure

straightforward and simple to implement in.

distributed files therefore a lucid next analysis step

ought to be a sensible analysis of those schemes.

Additionally, many concrete open issues follow

.From our work. First, it'd be potential to additional

improve the consistent hashing theme as mentioned

at the tip of our vary search system. Distributed

doesn't easily generalize to quite one order. as an

example (Fig.2) once storing music files, one may

need to index them by each creator and song title,

permitting lookups per 2 orderings. Since our

protocol rearranges the things per the ordering, doing

this for 2 orderings at a similar time looks tough. A

simple, however unpolished, answer is to arrange not

the things themselves, however simply store tips that

could them on the nodes. this needs way less storage,

and

 Network Setting Network

Setting

 The average downloading rate and Convergence

time

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

133 IJDCST

Makes it doable to take care of 2 or a lot of orderings

right away. Lastly, allowing nodes to decide on

capricious addresses in our item reconciliation

protocol for distributed file’s makes it easier for

malicious nodes to disrupt the operation of the P2P

network. It’d be attention-grabbing to seek out

counter-measures for this downside.

V.CONCLUSION

In this paper our proposal strives to balance the

masses of nodes and cut back the demanded

movement value the maximum amount as attainable,

whereas taking advantage of physical network

section and node heterogeneousness. In the absence

of representative real workloads (i.e., the

distributions of file chunks in an exceedingly large-

scale storage system) within the public domain, we've

got investigated the performance of our proposal and

compared it against competitory algorithms through

synthesized probabilistic distributions of file chunks.

The synthesis workloads check the load

reconciliation algorithms by making a few storage

nodes that area unit heavily loaded. the pc simulation

results area unit encouraging, indicating that our

planned algorithm performs o.k.. Our proposal is

comparable to the centralized rule within the Hadoop

HDFS production system and dramatically

outperforms the competitory distributed algorithm in

in terms of load imbalance issue, movement cost, and

recursive overhead. Significantly, our load

reconciliation algorithm exhibits a quick convergence

rate. The potency and effectiveness of our style area

unit more valid by analytical models and a true

implementation with a small-scale cluster

environment.

VI.REFERENCES

[1] H. Shen and C.-Z. Xu, “Locality-Aware and

Churn-Resilient Load BalancingAlgorithms in

Structured P2P Networks,” IEEE Trans.

ParallelDistrib. Syst., vol. 18, no. 6, pp. 849–862,

June 2007.

[2] Q. H. Vu, B. C. Ooi, M. Rinard, and K.-L. Tan,

“Histogram-Based GlobalLoad Balancing in

Structured Peer-to-Peer Systems,” IEEE Trans.

Knowl.Data Eng., vol. 21, no. 4, pp. 595–608, Apr.

2009.

[3] H.-C. Hsiao, H. Liao, S.-S. Chen, and K.-C.

Huang, “Load Balance withImperfect Information in

Structured Peer-to-Peer Systems,” IEEE

Trans.Parallel Distrib. Syst., vol. 22, no. 4, pp. 634–

649, Apr. 2011.

[4] M. R. Garey and D. S. Johnson, Computers and

Intractability: A Guideto the Theory of NP-

Completeness. W.H. Freeman and Co., 1979.

[5] D. Eastlake and P. Jones, “US Secure Hash

Algorithm 1 (SHA1),” RFC3174, Sept. 2001.

http://www.ijdcst.com/

INTERNATIONAL JOURNAL FOR DEVELOPMENT OF COMPUTER SCIENCE & TECHNOLOGY ISSN-2320-7884 (ONLINE)
VOLUME-1, ISSUE-V (Aug-Sep 2013) IS NOW AVAILABLE AT: www.ijdcst.com ISSN-2321-0257 (PRINT)

134 IJDCST

[6] M. Raab and A. Steger, “Balls into Bins—A

Simple and Tight Analysis,”LNCS 1518, pp. 159–

170, Oct. 1998.

[7] M. Jelasity, A. Montresor, and O. Babaoglu,

“Gossip-Based Aggregationin Large Dynamic

Networks,” ACM Trans. Comput. Syst., vol. 23, no.

3,pp. 219–252, Aug. 2005.

[8] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M.

Kermarrec, and M. V. Steen,“Gossip-Based Peer

Sampling,” ACM Trans. Comput. Syst., vol. 25, no.

3,Aug. 2007.

[9] H. Sagan, Space-Filling Curves, 1st ed. Springer,

1994.

[10] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi,

C. Tian, Y. Zhang, andS. Lu, “BCube: A High

Performance, Server-Centric Network

Architecturefor Modular Data Centers,” in Proc.

ACM SIGCOMM’09, Aug. 2009, pp.63–74.

[11] H. Abu-Libdeh, P. Costa, A. Rowstron, G.

O’Shea, and A. Donnelly,“Symbiotic Routing in

Future Data Centers,” in Proc. ACM SIGCOMM’10,

Aug. 2010, pp. 51–62.

[12] S. Surana, B. Godfrey, K. Lakshminarayanan, R.

Karp, and I. Stoica,“Load Balancing in Dynamic

Structured P2P Systems,” PerformanceEvaluation,

vol. 63, no. 6, pp. 217–240, Mar. 2006.

[13] S. Iyer, A. Rowstron, and P. Druschel, “Squirrel:

A Decentralized Peerto-Peer Web Cache,” in Proc.

ACM PODC’02, July 2002, pp. 213–222.

[14] I. Raicu, I. T. Foster, and P. Beckman, “Making

a Case for DistributedFile systems at Exascale,” in

Proc. 3rd Int’l Workshop Large-Scale Systemand

Application Performance (LSAP’11), June 2011, pp.

11–18.

http://www.ijdcst.com/

